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Abstract
We have developed a method for simulating multiple electron scattering in a
vacuum barrier using real-space single-electron wavefunctions for the separate
surfaces. The Green functions in the vacuum barriers are calculated to first order
in the Dyson series. We find that the zero-order current is equal to the usual
Bardeen approach only in the limit of zero bias and derive the modifications
in the finite bias regime. We also derive a first-principles formulation for the
energy of interaction between the two surfaces, and show that it is proportional to
the tunnelling current. With this method the tunnelling current can in principle
be computed to any order in the Dyson expansion.

(Some figures in this article are in colour only in the electronic version)

1. The Keldysh formalism in a vacuum barrier

From a theoretical point of view a tunnelling electron, e.g. in a scanning tunnelling microscopy
measurement, is part of a system comprising two infinite metal leads and an interface, consisting
of a vacuum barrier and, optionally, a molecule or a cluster of atoms with different properties
to the infinite leads. The system can be said to be open—the number of charge carriers is
not constant—and out of equilibrium—the applied potential and the charge transport itself
introduce polarizations and excitations within the system. The theoretical description of such
a system has advanced significantly over the last few years; to date the most comprehensive
description is based either on a self-consistent solution of the Lippman–Schwingerequation [1]
or on the non-equilibrium Green function approach [2–6]. Within the non-equilibrium
formalism the current through a conductor from lead A to lead B is described by [3]

I = e

h

∫ µB+eV

µA−eV
dE Tr

[
�<

A (E)G
>(E)−�>

A (E)G
<(E)

]
. (1)
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Inelastic effects within e.g. a molecule–surface interface can be included by considering
multiple electron paths from the vacuum into the surface substrate [7]. Within the vacuum
barrier itself, inelastic effects play an insignificant role. Here, as in most experiments in
scanning tunnelling microscopy, the problem can be reduced to the description of the tunnelling
current between two leads—the surface S and the tip T—thought to be in thermal equilibrium.
The bias potential of the circuit is in this case described by a modification of the chemical
potentials of surface and tip system, symbolized by µS and µT. This reduces the tunnelling
problem to the Landauer–Büttiker formulation [3, 8], or

I = 2e

h

∫ +∞

−∞
dE [ f (µS, E)− f (µT, E)] Tr

[
�T(E)G

R(E)�S(E)G
A(E)

]
. (2)

Here, f denotes the Fermi distribution function, GR (A)(E) is the retarded (advanced) Green
function of the barrier, and �S, �T are the surface and tip contacts, respectively. They
correspond to the difference of retarded and advanced self-energy terms of the surface and
tip; we define them by their relation to the spectral function AS (T) of the surface (tip) [3]:

AS (T) = i
[
GR

S (T) − GA
S (T)

] = GR
S (T)�S (T)G

A
S (T). (3)

Here, the explicit energy dependence has been omitted for brevity. At present, these equations
are evaluated within localized basis sets, and in a matrix representation. From a theoretical
point of view this requires one to either represent the electronic properties of the two surfaces
also in a localized representation [5, 6], or to transform the plane wave basis set of most density
functional methods to a local basis. The use of local basis sets compromises the numerical
accuracy in the tunnelling barrier, since the vacuum tails of the surface wavefunctions decay
too rapidly: the constant current contours in this case are too close to the surface.

2. Calculating the current from real-space wavefunctions

Here we present a formulation of the problem which is based on the Green functions of the
two surfaces, given in a real-space representation based on the electronic eigenstates of the
two systems. We show how the multiple-scattering formalism described in equation (2) can
be evaluated in real space, and how it relates to the perturbation expansion of the tunnelling
problem. We start with an eigenvector expansion of the surface and tip Green functions, given
by

GR (A)
S (r1, r2, E) =

∑
i

ψi (r1)ψ
∗
i (r2)

E − E ′
i + (−)iη (4)

GR (A)
T (r1, r2, E) =

∑
j

χ j(r1)χ
∗
j (r2)

E − E ′
j + (−)iε . (5)

Throughout this paper the wavefunctions ψ and χ denote the Kohn–Sham states of surface
and tip, respectively, resulting from a density functional calculation. The energy levels are
shifted due to the applied bias voltage (see figure 1), so E ′

i = Ei − eV/2, E ′
j = E j + eV/2.

The set-up of the system is shown in figure 1(a). The spectral function AS describes the charge
density matrix; from equation (3) we find

AS(r1, r2, E) = 2η
∑

i

ψi (r1)ψ
∗
i (r2)

(E − E ′
i)

2 + η2
. (6)

The spectral function is related to �S by equation (3). With the ansatz for �S:

�S(r3, r4, E) = C
∑

j

ψ j (r3)ψ
∗
j (r4) (7)
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Figure 1. (a) The system under consideration, and the surface integrals used in deriving the zero-
order current. (b) The effect of finite bias potentials: in this case the eigenvalues are shifted by
±eV/2.

where C is a constant, we perform the double volume integration of equation (3). In this case
the orthogonality of surface states reduces the expression to a compact form:

C
∫

d3r3 d3r4 GR
S (r1, r3, E)�S(r3, r4, E)GA

S (r4, r2, E)

= C
∑
i jk

ψi (r1)ψ
∗
k (r2)δi jδ jk

(E − E ′
i + iη)(E − E ′

k − iη)
. (8)

Comparing the result with equation (6) we find for the contacts of surface and tip,

�S = 2η
∑

k

ψk(r3)ψ
∗
k (r4), �T = 2ε

∑
i

χi(r1)χ
∗
i (r2). (9)

For the construction of the Green function in the barrier we use the fact that the charge
density is known from the separate calculation for the surface and tip. In the limit of weak
coupling, the total charge density of the interface is given by (see figure 1)

n(r, E) =
∑

i

ψi (r)ψ∗
i (r)δ(E − E ′

i) +
∑

j

χ j(r)χ∗
j (r)δ(E − E ′

j ). (10)

This indicates that a zero-order approximation for the Green function of the vacuum barrier
can be constructed as a sum of surface and tip Green functions, or

GR (A)
(0) (r1, r2, E) = GR (A)

S (r1, r2, E) + GR (A)
T (r1, r2, E). (11)

The imaginary part of the diagonal elements r1 = r2 of this Green function is just equal
to the total charge density. For the off-diagonal elements r1 �= r2 we demonstrate using two
separate estimates that this choice is justified. First, from the Schrödinger equation:[

− h̄2

2m
∇2 + VS(r1) + VT(r1)

]
(GS(r1, r2) + GT(r1, r2)) = 0 (12)
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it follows that the Green function is exact if

VS(r1)GT(r1, r2) + VT(r1)GS(r1, r2) = 0. (13)

In the surface region VT = 0 and GT ≈ 0. In the tip region VS = 0 and GS ≈ 0. In the
vacuum region both terms are products of functions centred on different sides of the vacuum
barrier and decaying exponentially: they are consequently very small in comparison to other
terms. Thus equation (13) approximately holds throughout the whole system. Second, let us
write a well known property of the Green function:

∂G(z)

∂z
= −G2(z). (14)

Substituting equation (11) into this formula results in the following condition: GS(z)GT(z) =
0. This is approximately satisfied over the whole system because in the surface region GT ≈ 0,
in the tip region GS ≈ 0, and in the vacuum region

GSGT ∝ e−κS|r−r′|

|r − r′|
e−κT|r−r′′|

|r − r′′| ≈ 0. (15)

Now all the necessary components for calculating the trace in the non-equilibrium formalism
are given in terms of the real-space surface and tip wavefunctions. We obtain the following
expression for the trace:

Tr
[
�TGR

(0)�SGA
(0)

] =
∑

ik

|Aik |2
[

4ηε

(E − E ′
k)

2 + η2
+

4ηε

(E − E ′
k + iη)(E − E ′

i − iε)

+
4ηε

(E − E ′
k − iη)(E − E ′

i + iε)
+

4ηε

(E − E ′
i)

2 + ε2

]
(16)

with the overlap integral Aik given by

Aik =
∫

d3r χ∗
i (r)ψk(r). (17)

The sum of fractions involving energies and ε, η, which results from the multiplication of
Green functions, can be written in a more compact way as

(E − E ′
k + E − E ′

i )
2 + (η + ε)2

[(E − E ′
k)

2 + η2][(E − E ′
i)

2 + ε2]
. (18)

In the limit η, ε → +0 the second term in the numerator will vanish, and since

lim
η→0

η

(E − E ′
i )

2 + η2
= πδ(E − E ′

i), (19)

the transmission probability reduces to∑
ik

|Aik |24π2δ(E − E ′
k)δ(E − E ′

i)(E − E ′
k + E − E ′

i )
2. (20)

The calculation of the matrix elements Aik involves an integration over infinite space, which
cannot be directly performed. To convert the volume integrals into surface integrals we use the
fact that the vacuum states of the surface and tip are free electron solutions with characteristic
decay constants, complying with the vacuum Schrödinger equation:

h̄2

2m
(∇2 + κ2

i )χi (r) = 0 ⇒ χi(r) = −∇2

κ2
i

χi(r) (21)

h̄2

2m
(∇2 + κ2

k )ψk(r) = 0 ⇒ ψk(r) = −∇2

κ2
k

ψk(r). (22)
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In addition we make use of the following identities:

χ∗
i ∇2ψk = ∇(χ∗

i ∇ψk)− ∇χ∗
i ∇ψk

ψk∇2χ∗
i = ∇(ψk∇χ∗

i )− ∇χ∗
i ∇ψk .

After some trivial manipulations, and making use of Gauss’s theorem, this allows us to convert
the volume integral into an integral over the separation surface (see figure 1):

Aik = 1

κ2
i − κ2

k

∫
dS

[
χ∗

i (r)∇ψk(r)− ψk(r)∇χ∗
i (r)

] =:
Mik

κ2
i − κ2

k

. (23)

It should be mentioned that the above expression only holds for κi �= κk . In practice, this will
not affect the general validity of the method, since STM measurements are done with different
surface and tip materials, possessing a different spectrum of eigenvalues with different vacuum
decay constants. But even if the decay constants are equal, the overlap integral will still be
finite. This surface integral is well known; apart from the universal constant h̄2/2m it describes
the tunnelling matrix element in the perturbation approach [9, 10].

3. Zero-order current

Integrating over the energy range, we obtain from equations (2), (20), and (23) the tunnelling
current in the zero-order approximation:

I(0) = 4πe

h̄

∑
ik

[
f (µS, E ′

k)− f (µT, E ′
i)

] ∣∣∣∣ (E
′
k − E ′

i)Mik

κ2
i − κ2

k

∣∣∣∣
2

δ(E ′
i − E ′

k). (24)

The decay constants are proportional to the eigenvalues shifted by the bias voltage of the
tunnelling junction:

Ei = h̄2κ2
i

2m
= E ′

i − eV

2
; Ek = h̄2κ2

k

2m
= E ′

k +
eV

2
. (25)

Including the effect of finite bias voltages thus leads to the following result:

I(0) = 4πe

h̄

∑
ik

[
f

(
µS, Ek − eV

2

)
− f

(
µT, Ei +

eV

2

)]

×
∣∣∣∣
(

− h̄2

2m
− eV

κ2
i − κ2

k

)
Mik

∣∣∣∣
2

δ(Ei − Ek + eV ). (26)

It can be seen from this formulation that the tunnelling spectrum obtained, or the dI/dV
curves, will increase quadratically with the applied bias voltage. This is actually observed in
spectroscopy experiments [11]. We shall present a detailed calculation of tunnelling spectra
and a comparison with experimental data further down. The second term in brackets, giving the
bias dependence in the zero-order scattering approach, is a correction to the standard Bardeen
approach, which can be recovered in the limit of zero bias. In this case we confirm the result
given by Feuchtwang and Pendry et al [12, 13], that the Bardeen method is just the zero-order
approximation, in the limit of zero bias, to a full scattering treatment [9, 10]:

IB = 4πe

h̄

∑
ik

[ f (µS, Ek)− f (µT, Ei )]

∣∣∣∣− h̄2

2m
Mik

∣∣∣∣
2

δ(Ei − Ek). (27)

This result and its interpretation in terms of scattering theory are well accepted. Here, it
shows once more that the choice for the zero-order Green function of the interface is justified.
It should be noted that the bias dependence will also affect the result of a derivation which is
based on an analytical form of the tip wavefunctions, e.g. the Tersoff–Hamann approach [14].
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There, the matrix element |Mik |2 is replaced by the charge density |ψk(R)|2, where R is the
centre of the STM tip apex. This means that the modified Tersoff–Hamann result, including
the bias dependence, will be the following:

ITH ∝
∣∣∣∣
(

− h̄2

2m
− eV

κ2
T − κ2

k

)
ψk

∣∣∣∣
2

, (28)

where κT is the decay length of the tip s orbital.

4. First-order Green function

The approach can be extended to higher orders. In the first-order expansion of the Dyson series
the Green function is given by

GR
(1) = GR

(0) + GR
(0)V GR

(0). (29)

To calculate the first-order Green function for systems out of equilibrium, the equation
has to be solved self-consistently [1, 5]. Self-consistency can in principle also be achieved
by basing the calculation on the Kohn–Sham states ψ and χ of charged surfaces [16]. Under
tunnelling conditions, however, the leads are in thermal equilibrium and the systems only
weakly coupled. V in this case is the potential VS + VT within the vacuum barrier:

GR
(1)(r1, r2) = GR

(0)(r1, r2) +
∫

dr3 GR
(0)(r1, r3) [VS(r3) + VT(r3)] GR

(0)(r3, r2). (30)

This leads to six additional first-order terms, described by

G(1) = G(0) + GSVTGS + GTVSGT + GSVTGT + GSVSGT + GTVSGS + GTVTGS. (31)

Here, the first line corresponds to excitations on either side of the tunnelling junction, the
second line describes the effects due to transitions. In the following we focus on transitions;
we note, however, that excitations can be included in the formulation by a suitable adaptation
of many-body theory. Writing the first term of the second line explicitly, and with the shortcut
f ±
ik = (E − E ′

i ± iη)(E − E ′
k ± iε), we get

GR
S VTGR

T =
∑

ik

ψi (r1)χ
∗
k (r2)

f +
ik

∫
d3r ψ∗

i (r)VT(r)χk(r). (32)

Apart from an insignificant contribution in the surface region the integral is just the Bardeen
matrix element in the zero-order expansion [10, 15], or the integral over the tip region�T:∫

�T

d3 r ψ∗
i (r)VT(r)χk(r) = − h̄2

2m
M∗

ki . (33)

Since the perturbative treatment is completely symmetric with respect to the surface and tip
system, we find equally for the second term, by integration over the surface region�S,

GR
S VSGR

T =
∑

ik

ψi (r1)χ
∗
k (r2)

f +
ik

∫
d3r ψ∗

i (r)VS(r)χk(r)

= − h̄2

2m

∑
ik

ψi (r1)χ
∗
k (r2)

f +
ik

M∗
ki . (34)

The first-order Green function of the interface reads then

GR (A)
(1) = GR (A)

(0) − h̄2

m

∑
ik

ψi (r1)M∗
kiχ

∗
k (r2) + χk(r1)Mkiψ

∗
i (r2)

f +(−)
ik

. (35)

It is evident that each subsequent iteration in the interface Green function can also be formulated
in terms of Bardeen matrix elements: in principle, the Green function and thus the current can
therefore be evaluated to any order.



Multiple scattering in a vacuum barrier obtained from real-space wavefunctions 2711

5. Interaction energy

Finally, we calculate the energy of interaction between the surface and the tip in the low
coupling limit. It has been shown recently by an analysis of first-order perturbation expressions
for the tunnelling current and the interaction energy that the two variables should be linear
with each other. From the first-order Green function we may construct the density matrix
n̂ = −i/2π(GA − GR). The interaction energy is then [17]

Eint = − i

2π

∫ +∞

−∞
dE Tr[(GA

(1)(E)− GR
(1)(E))(VS + VT)]. (36)

With GR (A)
(1) from equation (35) this leads to

Eint = −4

(
h̄2

m

)2 ∑
ik

|Mki |2
|Ei − Ek + eV | . (37)

The absolute value of the denominator is due to integrating the infinite energy interval in
two steps, and taking each result separately as a contribution to the interaction energy. The
calculation of the interaction energy only involves the computation of the tunnelling matrix
elements. As shown previously, the interaction energy will therefore be proportional to the
tunnelling current [17].

6. The spectrum of Fe(001)

The method has been applied to the calculation of the differential spectra of Fe(001), measured
with a tungsten tip [18]. The system is well known and spectroscopic data are available in
the literature (see e.g. [11]). The surface possesses a surface state near the �̄ point, at an
energy of +0.2 eV. We have made calculations for a 13-layer Fe(001) film with standard DFT
methods [19, 20], using projector augmented waves for higher precision [21], and a generalized
gradient approximation for the exchange–correlation potentials [22]. The two surface layers
were fully relaxed. In the final iteration we used 465 k-points in the irreducible wedge of
the Brillouin zone to obtain a dense map of the electronic structure. The STM tip model
was calculated in a similar fashion; we used a 13-layer tungsten tip with an atomically sharp
apex. The tip states were mapped with 100 k-points at the very centre of the Brillouin zone.
The spectrum was calculated for a bias range from −2.5 to +2.5 V. As described in [18], the
differential d I/dV curve is directly obtained for every energy step of 1 mV. The spectrum is
then integrated to yield the I (V ) values. These values describe the set point of experimental
spectra, or the distance between tip and surface, where the feedback loop is disengaged. The
results of our simulations are shown in figure 2. The onset of the surface state, its energy, and
the quadratic dependence of d I/dV on the bias is well reproduced. We note, though, that the
agreement is less than perfect at the bias end-points of the simulated spectrum as compared
with the experimental one. The deviation should in part be due to the high bias voltage, which
will contain contributions of field emitted electrons. These contributions, expected to dominate
the spectrum once the bias potential becomes comparable to the workfunction of the surface
(for metals around 4–5 eV), are omitted in the simulation of the spectrum. Judging from the
comparison of the experimental and simulated spectrum, contributions from the field emission
regime should start to play a role at bias values of 1–1.5 V.
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Figure 2. Left: experimental tunnelling spectrum of Fe(001) (black graphs, taken from [11]),
and the spectrum simulated with an atomically sharp tungsten tip. The distance between the
Fe(001) surface atoms and the tip apex is shown. The surface state yields a characteristic peak
at about 200 mV; the bias dependence of the spectrum is well reproduced. Right: comparison
of the Bardeen approach and the zero-order scattering approach. It can be seen that the Bardeen
approach, in particular in the negative bias range, does not reproduce the bias dependence of the
spectrum. For comparison we also show the density of states in the iron surface layer (grey lines):
in this case neither the bias dependence nor the asymmetry of the spectrum is reproduced.

7. Summary

We have shown that tunnelling currents and interaction energies can be calculated in real space
within the non-equilibrium Green function formalism based on the separate wavefunctions of
the surface and tip. It was established that the zero-order expansion is equal to the traditional
Bardeen approach only in the limit of zero bias and we derived the correction term for finite bias
values. We also showed that successive iterations of the interface Green function with the help
of Dyson’s equation are feasible, since they can be reduced to products of Bardeen matrices
and wavefunctions of the surface and tip. In this case higher order Green functions will lead
to multiple electron pathways in the interface. These will be explored in future publications.
With the help of the first-order Green function we calculated the energy of interaction between
the surface and tip, and we found that it will be proportional to the tunnelling current, as stated
in a previous paper [17]. Finally, we simulated the spectrum of Fe(001), measured with a
tungsten tip and an iron tip over a bias range from −2.5 to +2.5 V. Here we find that the
simulated spectrum agrees very well with experimental data, as regards the position and the
onset of the surface state as well as the trends in the high bias range.
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